Whitepaper: Smartwatch PCB & Firmware Deep Customization (2025 Edition)

Executive Summary: This whitepaper provides a technical foundation for understanding smartwatch deep customization across PCB architecture, sensor systems, chipset selection, firmware engineering, and SDK integration.

- 1. Introduction: As wearables evolve, brands require deeper customization: hardware control, firmware behavior, algorithms, and proprietary communication layers.
- 2. PCB Architecture: The PCB defines electrical routing, RF stability, waterproof capability, and sensor performance. Deep customization includes multi-layer design, antenna tuning, sensor placement, and custom interfaces.
- 3. Chipset Framework: Chipset selection shapes battery life, UI performance, Bluetooth stability, and data accuracy. OEM customization includes RAM/ROM tuning, GNSS modules, and power optimization.
- 4. Sensor System: Includes PPG, IMU, ECG, barometer, temperature sensors, and GPS. Customization covers lens design, placement optimization, sensor fusion, and algorithm matching.
- 5. Firmware Intelligence: Firmware governs UI logic, Bluetooth protocols, sensor sampling, motion algorithms, power modes, and OTA updates. Deep customization enables proprietary logic and advanced functionalities.
- 6. SDK Integration: SDK provides real-time data, APIs, pairing logic, OTA, and encryption. Custom SDK layers support enterprise, medical, and IoT applications.
- 7. Development Workflow: A typical deep customization cycle includes requirements analysis, chipset selection, PCB routing, firmware baseline, algorithm tuning, EVT/DVT/PVT, certification, and mass production.

Conclusion: Deep customization across PCB, chipset, sensors, firmware, and SDK enables differentiation, accuracy, stability, and full ecosystem control.